Wood, About Strength & Durability (part 2)

Physically, wood is strong and stiff but, compared to a material like steel, it’s also light and flexible. It has another interesting property too. Metals, plastics, and ceramics tend to have a fairly uniform inner structure and that makes them isotropic: they behave exactly the same way in all directions. Wood is different due to its annual-ring-and-grain structure. You can usually bend and snap a small, dead, tree branch with your bare hands, but you’ll find it almost impossible to stretch or compress the same branch if you try pulling or pushing it in the opposite direction. The same holds when you’re cutting wood. If you’ve ever chopped wood with an ax, you’ll know it splits really easily if you slice with the blade along the grain, but it’s much harder to chop the opposite way (through the grain). We say wood is anisotropic, which means a lump of wood has different properties in different directions.
That’s not just important to someone chopping away in the woodshed: it also matters when you’re using wood in construction. Traditional wooden buildings are supported by huge vertical poles that transmit forces down into the ground along their length, parallel to the grain. That’s a good way to use wood because it generally has high compressive strength (resistance to squeezing) when you load it in the same direction as the grain. Wooden poles are much weaker placed horizontally; they need plenty of support to stop them bending and snapping. That’s because they have lower tensile strength (resistance to bending or pulling forces across the grain). Not all woods are the same, however. Oak has much higher tensile strength than many other woods, which is why it was traditionally used to make the heavy, horizontal beams in old buildings. Other factors such as how well seasoned (dry) a piece of wood is (as discussed below) and how dense it is also affect its strength.


One of the best things about wood is how long it lasts. Browsing through the daily news, you’ll often read that archeologists have unearthed the buried remains of some ancient wooden article—a wooden tool, perhaps, or a simple rowboat or the remnants of a huge building—that are hundreds or even thousands of years old. Providing a wooden object is properly preserved (something else we discuss later), it will easily outlast the person who made it. But just like that person, a wooden object was once a living thing—and it’s a natural material. Like other natural materials, it’s subject to the natural forces of decay through a process known as rotting, in which organisms such as fungi and insects such as termites and beetles gradually nibble away the cellulose and lignin and reduce wood to dust and memories.

Wood and water
Wood has many other interesting characteristics. It’s hygroscopic, which means that, just like a sponge, it absorbs water and swells up in damp conditions, giving out the water again when the air dries and the temperature rises. If, like mine, your home has wooden windows, you’ll probably notice that they open much more easily in summer than in winter, when the damp outdoor conditions make them swell into the frames (not necessarily such a bad thing, since it helps to keep out the cold). Why does wood absorb water? Remember that the trunk of a tree is designed to carry water from the roots to the leaves: it’s pretty much a water superhighway. A freshly cut piece of “green” wood typically contains a huge amount of hidden water, making it very difficult to burn as firewood without a great deal of smoking and spitting. Some kinds of wood can soak up several times their own weight of water, which is absorbed inside the wood by the very same structures that transported water from the roots of the tree to the leaves when the tree was a living, growing plant.

Wood and energy
What other properties does wood have? It’s a relatively good heat insulator (which comes in handy in building construction), but dry wood does burn quite easily and produces a great deal of heat energy if you heat it up beyond its ignition temperature (the point at which it catches fire, anywhere from around 200–400°C, 400–750°F). Although wood can absorb sound very effectively (another useful property in buildings, where people value sound insulation shutting out their neighbors), wooden objects can also be designed to transmit and amplify sounds—that’s how musical instruments work. Wood is generally a poor conductor of electricity but, interestingly, it’s piezoelectric (an electric charge will build up on wood if you squeeze it the right way).

Environmentally friendly
Wood was one of the first natural materials people learned to use, and it’s never lost its popularity. These days, it’s particularly prized for being a natural and environmentally friendly product. Forestry is a rare example of something that has the potential to be completely sustainable: in theory, if you plant a new tree for every old tree you cut down, you can go on using wood forever without damaging the planet. In practice, you need to replace like with like and forestry is not automatically sustainable, whatever papermakers like us to believe. A brand new tree has much less ecological value than a mature tree that’s hundreds of years old so planting a thousand saplings may be no replacement for felling just a handful of ancient trees. Logging can be hugely environmentally damaging, whether it involves clearcutting a tropical rainforest or selectively felling mature trees in old-growth temperate woodland. Some of the processes and chemicals used in forestry and woodworking are also environmentally damaging; chlorine, used to bleach wood fibers to make paper, can cause water pollution in rivers, for example. But on the positive side, growing trees remove carbon dioxide from the atmosphere and planting more of them is one way to reduce the effects of climate change. Trees also provide important habitats for many other species and help to increase biodiversity (the wide range of living organisms on Earth). Practiced the right way, forestry is a good example of how people can live in perfect harmony with the planet.

Using wood
How does wood get from the tree to the roof of your house, your bookshelf, or the chair you’re sitting on? It’s a longer and more complex journey than you might think that takes in harvesting, seasoning, preserving and other treatment, and cutting. we will continue our discussion for next time. source